分子構造を直接変化させて素材の機能を向上

放射線の一種である電子線(Electron Beam:EB)を 物質に照射すると、電子がもつエネルギーによって分子構 造が変化し、さまざまな特性を得られます。しかも熱や光 ではできない加工を可能にし、優れたエネルギー効率で 簡単・迅速・均一に化学反応処理ができるため幅広い工業 製品に利用されています。

そんな電子線照射技術のパイオニアであり、リーディン グカンパニーでもある(株)NHVコーポレーションを訪 問し、EB加工部の奥村さんと吉谷さんに、その歴史から 仕組み・利用状況などを伺いました。

EB加工部 京都EBセンターグループ長 兼 機能材料事業化推進グループ長 奥村 康之さん

EB加工部 機能材料事業化推進グループ 吉谷 駿さん

・貴社のプロフィールをご紹介ください

奥村さん:産業界では1950年代に放射線を工業利用し ようという機運が高まりました。そうした中で、コンデンサ やトランスなどの受電・変電設備を製造する日新電機が、 いち早く電子線照射装置の開発に着手し、1960年代に 装置を完成させました。その後、開発・製造部門が分離独 立して「日新ハイボルテージ(略称:NHV)」という会社が 設立され、合併や統合を経て2003年に現在の(株)NHV コーポレーションを設立。今では国内2工場と海外2拠点 で装置の製造・販売を、国内3カ所のEBセンターで電子線 照射の試験や受託加工を行っています。

どのような特性が得られるのですか?

奥村さん:物質に電子線を照射すると、電子は自らのエネ ルギーを物質に与えながら物質内を通過します。物質は 与えられたエネルギー(吸収線量)により、化学反応を起こ して様々な特性を発現します。その物質の用途に応じて電 子線のエネルギーや吸収線量を調整して、うまく特性を発 現する必要があります。

用途は4つに大別されます。①分子の架橋(橋かけ)に よる素材特性の向上 2別の分子を結合させるグラフト重

◆電子線架橋の利用例

合による新たな機能の付

加 ③モノマーなどの重合

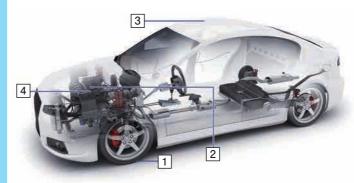
による硬化 4細胞にダ

メージを与える殺菌・滅菌

電子線照射装置を保

有されていないお客様

向けに、受託加工サービ

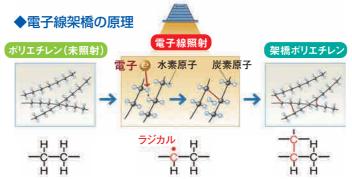

スを行っているEB加工

部では、その依頼の8割

が架橋による素材特性の

です。

向上です。



◆得られる特性

自動車部品の性能向上に貢献する電子線架橋

電子線架橋の原理や代表的な適用製品は?

吉谷さん: 高分子材料に電子線を照射すると、電子線のエ ネルギーにより分子結合が切れ、不安定で反応しやすい 活性点(ラジカル)が発生します。すると分子鎖間でラジカル が反応・結合して三次元の網目構造が形成されます。これを 架橋反応と言い、耐熱性や強度などの特性が向上します。

代表的な利用分野は自動車部品です。例えば、タイヤは 様々なゴムシートや部材を組み合わせて金型に入れ、熱と 圧力を加えて成形(加硫工程)します。しかし、加熱時のゴム は柔らかく変形しやすいため、ゴムシート内の補強材(タイヤ の骨格となる合成繊維、炭素繊維、スチールなど)が位置ズ しする場合もあり、従来はゴムを厚くして対策していました。

そこで、加硫工程の前にゴムシートに電子線を照射して ゴムの流動性を抑えることで、位置ズレを防ぎ、同時にゴ

タイヤゴムの流動性制

熱収縮チューブ、フィルムの収縮性能向上

ムシートの厚みも薄くできたのです。これにより原材料の 削減、加工性の向上、軽量化による燃費向上も実現してい ます。特にバスやトラック、工事用車両などの大型タイヤ でのメリットは大きいですね。

奥村さん: 他にも、エンジン周りなど高温環境に使われる 電線被覆を電子線架橋することで、例えばポリエチレン被 覆の耐熱温度90℃を125℃に向上させています。

また、内装材や断熱材用の発泡シートでは、気泡の大き さを電子線架橋でコントロールできることから、表面は細 かい泡でなめらかで肌触り良く、内面は大きな泡で高い衝 撃吸収性を発現させることが可能です。さらに配線の保護、 結束、絶縁など様々な用途に使われている熱収縮チュー ブは、加熱するとチューブが収縮して電線やコネクタに密 着する特殊なプラスチックが使われていますが、電子線架 橋によって収縮性能を向上させ、熱・振動・衝撃・ほこり・薬 品など外部からの影響を効果的に遮断しています。

30カ国以上に450台超を納入している 電子線照射装置

吉谷さん:装置の原理は、フィラメント電源で発生させた 電子を高電圧によって真空中で加速し、窓箔を通過させて 対象物に照射します。そこには当社が60年以上にわたっ て培った「高電圧、ビーム制御、高真空、安全システム」の 技術により ①高精度で均一なビーム照射 ②高いエネルギー効率(電力変換効率) 3安 定したビーム出力 4 お客様に応じた設計 5 簡単で安心な操作性を実現しています。こう した特長から電子線照射装置の納入実績は 30カ国以上450台超にのぼります。

装置を運転するために **②**特別な資格が必要ですか?

吉谷さん:加圧電圧が1.000kV以上の装置

になると、法 令により放

射線取扱主任者の配置 が必要ですが、それ未満 の電圧なら不要です。電 子線や二次的に発生す るX線を自己遮蔽してい るので安心して操作い ただけます。

京都EBセンターで稼働中の電子線照射装置

したことの開催など知識の 普及にも注力されていますね

奥村さん:はい。電子線加工技術の普及・啓発を目的に、企 業の開発部門や大学の研究者などを対象に見学会やオン ラインセミナーを開催しています。また、中学・高校生向け の教材として、架橋反応を体感できる実験キットも製作し ています。放射線を未照射の樹脂シートは60℃以上のお 湯につけると柔らかくなって伸びるのに、照射したシート は形を保持し、一度伸ばしてもお湯につけると元に戻りま

す。架橋による形状記憶 効果(熱収縮性能向上) を示すもので、次代を担 う若者たちがこうした体 験を通じて電子線に興 味を持ってくれたらと期 待しています。

架橋反応を体感できる実験キット

そこが知りたい! エネルギーのいま 浜岡原子力発電所 プラント施設の審査開始

浜岡原子力発電所3・4号機では、安全性向上 すべき設備の故障、基準地振動、基準津波、その 対策工事を行うとともに、原子力規制委員会による 新規制基準の適合性確認審査を受けています。

2024年12月24日よりプラント施設の審査が始 まりました。これは、「設計基準」(安全設計上、想定

他の自然現象や火災等への対処)、「重大事故等 対策」(設計上の想定を超えた炉心損傷や格納容 器破損など重大事故等への対処)について原子力 規制委員会に確認いただくものです。

今後の行事予定

各種講演会を計画しており ます。詳細はホームページで ご案内いたします。

ホームページは こちらから

次回C-press132号の発行は8月の予定です。