ウクライナ侵攻から見える、 日本のエネルギー事情

~2050年実質CO2排出ゼロに向けた革新軽水炉の必要性~

電力危機と言われる中で「再工 ネの主力電源化 | を主張する 人々がいます。しかし、天候・季 節・昼夜によって変動する太陽 光・風力発電の電力を送配 電網に接続し、電力需給の 同時同量を維持するために 稼働させる火力発電所の費 用などを考えると、そのシス テムコストは非常に高く なっています。

日本の太陽光発電能力 はすでに67GW(1GW= 100万kW=原発1基に相 当)に達し、中国・米国に 次ぐ太陽光大国です。そ の一方で、1kW/hの電気 を得るために何gのCO2を 排出したかを示す「CO2排 出係数」を見ると日本は 534g/kWh、ドイツ (472g) や米国(440 g)と同程度で、 2030年目標の50g/kWhに はほど遠い状況です。それは 太陽光発電の設備利用率が

実質13%程度で、発電できない 時間帯は化石燃料を燃やす火 力発電が補完しているからです。 この不安定さと効率の悪さを考 えれば、主力電源化など非現実的で、 導入限界を理解してほどほどの規模 にとどめるべきでしょう。

東京工業大学 特任教授

東京工業大学大学院理工学研

究科原子核工学修士課程修了。

専門は原子炉工学。(株)東芝に

入社し原子力の安全性に関する

研究に従事。同社の電力・産業シ

ステム技術開発センター主幹を

経て、2005年から北海道大学大

学院助教授、以降、教授·部門

長・学科長を歴任し、2016年に

特仟教授・名誉教授。2018年に

東京工業大学特任教授に就任

し、2021年より現職。日本機械

学会·日本原子力学会·日本保全

学会フェロー。2018年、IAEA

とOECD-NEAが共同運営す

る職業被ばく情報システム

(ISOE)から卓越教授賞

(Outstanding Professor

of the Year)を受賞。

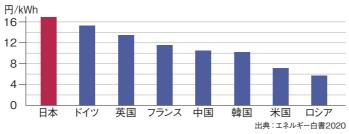
ら ばやし ただし

▲十四半祭電の国別道スランセング(2020年)

▼太陽儿光电の国別等人フノイング(2020年)			
順位	国名	GW(ギガワット)	国土面積あたり 太陽光kW/km
1	中国	254	26
2	米国	74	8
3	日本	67	177
4	ドイツ	54	151
5	インド	39	12

出典: https://www.globalnote.jp/post-3240.html 奈良林氏が国土面積で除して算出

世界一高い産業用電力と産業の凋落


製造業の国際競争力を維持するうえで、原材料費やエネル ギーコストは極めて重要ですが、残念ながら日本の産業用電力 は主要国の中で最も高いのです。そうなると電気代の安い国 で生産せざるを得なくなります。象徴的な出来事として、日本製 鉄が脱炭素化のため高炉から電炉へ切り替える戦略の中で、 自動車用鋼板などを生産する新工場を電気代の安い米国ア ラバマ州に建設すると発表しました。

太陽光パネルに目を転じると、2010年頃には圧倒的なシェ アを誇っていた日本製が、電気代が安く鉱物資源も安価な中 国に追い抜かれ、今では日本市場での国産パネルは2割に満 たない有様です。

また、基幹産業である自動車もピンチに直面しています。日 本は欧米がリードする「電気自動車(EV)へのシフト に乗り遅 れ、日本の自動車メーカーはEV販売の世界10位内に1社も 入っていません。今後、欧州を中心にEV化が進むことになると、 製造業が安い電気を大量に安定して使える体制を整えなけれ ば日本の産業競争力はますます弱まってしまうでしょう。

◆産業用電力料金の国際比較(2016年)

●ドイツの電力多消費産業の電力料金は電気税、再エネ賦課金、洋上電力電網賦課金、 託送料金等を大幅に減免されており、日本の電力多消費産業の負担額の2.5~3分の1

知っておきたいウクライナの電力事情

2022年2月にロシアがウクライナへ侵攻し、これに反発した欧米 諸国がエネルギー資源の脱ロシア依存を打ち出した結果、化石 燃料が高騰して世界的なエネルギー危機の様相を呈しています。

ウクライナといえば1986年のチェルノブイリ原発事故(当時 ソビエト連邦)を連想しますが、私は2013年に福島第一原発事 故で被災した方々とともに、街の復興プロセスを調べるため現 地を訪問しました。この国は紀元前7世紀に交通の要衝として 栄え、その後いくつもの異民族に支配された歴史を持ち、1991 年にソ連の崩壊とともに独立。これを機にすべての核兵器を口 シアに返還し、原発を新規建設しない脱原発(モラトラム)政策 を決定しました。

しかし、石油・ガスの資源が乏しくロシアからの輸入に頼ってい たことから何度も停電が発生し、工場の操業率が落ち、国の経

NGO「ゼムリャキ」のメンバーと意見交換

済が破綻したのです。そこで原 発の必要性が再認識され、93年 に安全性の向上に注力して原 発を再稼働させて経済の立て 直しを図りました。

現在、15基の原発によって全

電力の50%が賄われ、2030年までに新たに2基を建設する計画 でした。私たちが現地のNGO「ゼムリャキ」にインタビューした際 に「原発の再稼働で公害も無くなった。これだけは言っておく、人 類に原子力は必要だ」と語ったメンバーの言葉が忘れられません。

ロシア軍による原発への攻撃と影響

そんな時にウクライナは ◆ウクライナ国内にある原子力発電所 突然ロシアに侵攻され、 廃炉中のチェルノブイリ 原発が制圧され、欧州最 大級(100万kW×6基)の ザポリージャ原発も砲撃さ れました。被害によっては 広域に深刻な影響を及ぼ す恐れのある原発への攻 撃は国際法に違反し、

IAEA(国際原子力機関)はもとより多くの国々が非難しています。 しかし、今回の原発への攻撃で、米国の同時多発テロでも計 画されたという航空機テロ、あるいはミサイル攻撃などがより現実 味を帯び、日本はもちろん多くの国々を緊張させています。

こうした攻撃から原発を守るには、建屋を地下に建設する、あ るいは航空機の侵入を防ぐため周辺に送電線・鉄塔・アンテナ・ 風車・高いポールなどの障害物を設置する、ミサイルに対しては 迎撃システムをはじめ原子炉建屋の周辺を高いワイヤーフェン

日欧米の支援で廃炉中のチェルノブイリ原発

スで囲うなど様々な方 法があります。私もこ れらの手法を原子力 規制委員会に提案し たことがあります。

原発の安全性を高め脱炭素の柱に

日本の原子力発電所は、福島第一の事故を徹底的に分析し、 原子力規制員会の監督下でフィルターベント装置をはじめ数々 の安全対策が強化され、事故による放射性物質の飛散リスクは 1億分の1に低下しました。特に自然災害(地震・津波・森林火災・ 火山爆発・竜巻など)に対しては、最も強靭で安全な電源と言っ

もちろん航空機テロにつ いても対策が進められて います。

むしろ、こうした対策が 進んでいることを県民・ 国民の方々に分かりや すく周知し、理解いただく ことが課題だと思います。

ても過言ではありません。 ◆脱炭素を目指す多くの国が原子力 利用を継続

将来的に非利用

そして、既存原発の安全性向上と同時に、次世代の「革新軽 水炉 | や「小型モジュール炉 | の開発が世界各国で進められてい ます。その背景にあるのは、深刻な地球温暖化に対するCO2排 出削減に最も有効な手段として原子力発電が再評価されたから です。実際、世界がエネルギー危機に直面する中で脱炭素を目 指すため、多くの国が原子力発電の増強に動き出しています。 「脱原発」は決して世界の潮流ではなく、むしろその逆です。

革新軽水炉の必要性と小型炉・高速炉の活用

2022年8月、岸田首相が「電力の安定供給・脱炭素化・エネル ギー安全保障」の観点から原子力発電の推進に方針転換し、既 存原発の再稼働とともに次世代原発の開発加速を指示しました。 次世代炉の中で早期の実用化が期待できるのが「革新軽水炉」 です。100万kW級の原発稼働で培った知見・技術に、燃料溶融し た際の対策設備やデジタル技術による監視制御の強化などで事 故リスクを最小化します。現在、三菱重工が北海道・関西・四国・九州 電力と共同開発を進め、日立GEも全交流電源が喪失しても自然 に冷温停止できる欧州基準の革新軽水炉の開発を始めています。

次に注目されるのが、出力30万kW以下の小型モジュール炉 です。これは原子炉など発電設備の大半を工場で製造して現地 で組み立て、建設工期を半分に短縮し、コストも大幅に抑えます。 この小型炉は世界で約80のプロジェクトが進められています。

また、日本では原発の使用済み ◆次世代原発の主な種類 燃料を再処理し、回収したウラン とプルトニウムを有効利用しつつ 廃棄物の発生量を抑える「核燃 料サイクル」を進めています。その 中で、小型の高速炉によって有害 度の高い核種を焼却し、地層処 分場の保管期間を約300年に短 縮する(直接処分では有害度低 下まで10万年、ガラス固化体では 約8千年)研究も行われています。

安全性を大幅に高めた。 既存技術がベースのた め最も開発が進む。 出力30万kW以下。設備 の大半を工場で生産し モジュール炉 工期や建設費を削減。 炉内の温度が高くエネ 高温 ルギー効率が高い。水素 ガス炉 も取り出せる。 高速の中性子により高 効率で核燃料を燃やせ る。核のごみも少ない。 水素原子が核融合する 際のエネルギーを活用。

安全性が高い。

深刻なエネルギー供給危機や資源価格の高騰 の中で日本が成長軌道を取り戻すには、低廉で安定した雷源 を供給できる体制の再構築が不可欠です。それには新しい概 念に基づく安全性を備えた原発の新増設が必須だと考えます。

一方で、脱炭素が喫緊の課題という共通認識の中で再工 ネが礼賛され、世界中が再エネで電力のすべてを賄えるかの ような錯覚に陥っていますが、太陽光発電の設備利用率は たかだか13%です。

日本は再エネの普及拡大に再エネ賦課金で90兆円を投 入してきていますが、仮に90兆円を原子力に投じれば原発 を180基も建設でき、再稼働する20基と合わせて200基となり ます。そうなれば水力や他の再エネと協調してカーボンニュー トラルを実現できるでしょう。さらに環境負荷の少ない手法で、 水素やメタン・メタノールなどの合成燃料の製造も可能です。

原子力の活用で経済的な優位性も生まれますが、それに は人材育成やサプライチェーンの再構築を進めることが肝 要です。