情勢講演会ダイジェスト版 **本稿は2022年2月にリモート配信で開催した講演会「エネルギーの明日を考える」を

COP26の行き詰まりを踏まえた 我が国の進むべき道

~続・原子力なしで人類は生き残れるのか?~

東京工業大学科学技術創成研究院 ゼロカーボンエネルギー研究所 特任教授 奈良林 直氏

東京工業大学大学院理工学研究科原子核工学修士課程修了。専門は原子炉工学。(株)東芝に入社し原子力の安全性に関する研究に従事。同社の電力・産業システム技術開発センター主幹を務 める。2005年から北海道大学大学院に転じ、教授・部門長・学科長を歴任し、2016年に特任教授・名誉教授に就任。2018年に東京工業大学特任教授に就任し、2021年6月より現職。日本機械学 会・日本原子力学会・日本保全学界フェロー。2018年、IAEAとOECD・NEAが共同運営する職業被ばく情報システム(ISOE)から「卓越教授賞(Outstanding Professor of the Year Award)」受賞。

足並みが乱れるCOP26と現実路線に舵を切る欧州

2021年の国連COP26(気候変動枠組条約第26回締約 国会議)で『世界気温の上昇を産業革命前に比べて1.5℃以 内に抑えるため石炭火力発電を段階的に削減する」という合 意が採択されました。しかし、発展著しい途上国で石炭火力 発電所が次々に建設され、合意内容と現実が乖離しています。

一方、同じ時期にフランスのマクロン大統領は、国内に加 圧水型原子炉(EPR165万kW)6基を建設する方針を表明し、 今年2月、さらに8基を増設する計画を明らかにしました。これ は原発への依存を減らすため12基の削減を公約していた路 線の大転換で、エネルギー情勢が変化する中で、国益を守り 安定した電源を確保するための英断と言えるでしょう。

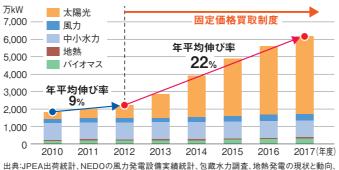
また同月、EU委員会は温室効果ガスの排出削減のため、 原子力発電と天然ガス火力発電を条件付きで「持続可能な 経済活動しとして認め、民間投資を促す方針を発表しました。 脱原発派のドイツなどはこれに反対していましたが、ロシアの 天然ガスに依存しない政策に修正を始めました。

再生可能エネルギーは「不安定 | で「高コスト|

太陽光発電大国のCO2排出係数が軒並み高止まり

東京電力福島第一原発の事故を機に、日本も世界も再生 可能エネルギー(以下、再エネ)の大合唱のもと新設・増設に まい進してきました。その結果、日本の太陽光の発電能力は 原発67基相当(67GW)に達し、世界3位の規模です。

それにも関わらず、1kWhの電気を得るために日本がCO2 を排出する係数(小さいほど良い)は、水力と原子力発電が主 力の北欧やカナダ、原子力大国のフランスに比べて8~10倍 以上も大きく、再エネ大国のドイツや太陽光発電大国の中 国・米国ともに下位に甘んじています。つまり太陽光発電は CO2排出削減に充分に貢献できていないのです。


太陽光発電の設備利用率は13%でコスト高

太陽光発電は夜間は機能できないだけでなく、日本では晴 天の確率が50%、最大出力は1日約6時間に過ぎません。さら に電気回路損失などを差し引くと「設備利用率は13%」とい うのが実情です。今後、普及が見込まれる風力発電の設備利 用率も20%に過ぎず、残りの電力供給は水力・火力・原子力 発電で補完せざるを得ません。つまり「再エネを主力電源とす るのは困難しなのです。

近年では太陽光・風力の発電コストは低下したものの、総 発電量に占めるシェア拡大に伴い、接続コスト(電源を送電 網に接続)、送配電網コスト(維持コスト)、バランスコスト(変 動する発電量への対応)、活用コスト(再エネを受け入れるた めの調整用電源)が増大しています。

一方で再エネの電力を長時間活用するための蓄電池の開 発が進められていますが、大規模な蓄電やこれに対応する送 電線の増強にも莫大なコストを要します。

◆再エネの設備容量の推移(大規模水力は除く)

RPS制度・固定価格買取制度認定実績などにより資源エネルギー庁作成

|世界一高い「電気代」と我が国の「産業の凋落」

産業用電力料金が国際競争力の足かせに

産業用電力料金は、製造業の国際競争力や雇用に大きく 影響しますが、日本は米国の2倍以上と主要国の中で最も高 くなっています。エネルギー政策を見直し、これを改善しなけれ ば我が国の産業の凋落は避けられません。

例えば、2010年の太陽光パネルのシェアは日本が約87% を占めていましたが、中国に追い越されて2019年には17%ま

た、かつて粗鋼生産 も世界トップでしたが、 今や日本製鉄が5位 に入るのがやっとの 状態です。しかも同社 は世界2位のアルセ ロールミタル社と合 弁で米国に自動車用 鋼板の電炉工場を 建設しますが、電気

で急落しています。ま ◆世界一高い日本の産業用電力料金 _{円/kWh} 産業用電力料金の国際比較(2016年) 出.曲:エネルギー白書2020

代の高い日本での電炉建設は問題外となっています。今後も 天然ガスの高騰による電気代の高止まりは続くでしょう。

また、基幹産業の自動車でも電気自動車(EV)では日本 メーカーはベスト10にも入りません。かつて世界初のEV量産 化で先陣を切った日産が14位、トヨタも17位(2020年販売実 績)。しかもEV製造に不可欠なリチウム・黒鉛・コバルト・ニッ ケル・希土類の採掘地が中国に抑えられ、今後の価格急騰 が予測されているのです。

自然災害の激甚化と電力需給のひつ迫

LNG価格の高騰に見る世界のエネルギー事情

2019年11月の講演(当会ホームページ [講演録 | ご参照) でもお話しましたが、気候危機による災害の激甚化はすさまじ く、ハリケーンの巨大化、豪雨による大洪水、熱波や大寒波の 襲来など枚挙にいとまがありません。こうした自然災害によっ て電力需給がひつ迫し、世界各地で大停電が起きています。

一方で、世界的な脱炭素化によって天然ガスへのシフトが 強まり、2020~21年のアジア産LNG(液化天然ガス)のス ポット価格は8カ月間で18倍に高騰し、今年は厳冬とコロナ禍 後の経済回復を見込んで31倍に(2020年5月比)急騰してい ます。電力ひっ迫による大停電リスクに再エネが対応できるは ずもなく、火力発電のフル操業で急場をしのいでいます。

国産技術である原子力発電の活用を

国連欧州経済委員会が原子力発電を評価

2021年10月、国連欧州経済委員会(UNECE)は『電源に 関するライフサイクル評価」という報告書で、原子力発電を 「CO2削減に最も有効な手段」と位置付けました。理由として 「原子力発電は、そのライフサイクル全体で、他のどの電源よ りCO2排出量が少なく、風力・太陽光・ガス・石油・石炭と比較 して、キロワット時(kWh)あたりのCO2排出量が最も少ないこ とを確認。また、原子力発電はライフサイクルにおける土地利 用が最も少なく、すべてのクリーンテクノロジーの中で鉱物と 金属の要件が最も低いことも明らかになった」と温暖化防止 に対する可能性と経済性を高く評価しました。

再稼働の促進と新増設が必要

10年間で原発の安全性は飛躍的に向上

日本の原子力発電所は、福島第一原発の事故を教訓とす る新規制基準のもとで、大規模災害をはじめ重大事故も想 定した様々な対策が講じられ、その安全性は飛躍的に向上し ています。一例をあげれば、発電所で重大な事故が発生した 場合、原子炉格納容器の破損を防止するために原子炉内の 蒸気を放出する「フィルターベントシステム」があり、排気中の 放射性物質を除去する高性能フィルターで、放射性物質を 従来の1億分の1以下まで濾し取ります。

また、運転開始40年超の高経年化対策では、関西電力の 美浜3号機の中央制御室のフルデジタル化や四国電力伊方 原発2号機での炉内構造機器の交換など大規模なリニュー

アルによって「老朽プラント」とは呼べないほど性能を高めて います。こうした対策が進んでいるにも関わらず再稼働が9基 という現状が残念でなりません。これについては規制の合理 化や行政の改革が喫緊の課題です。

これから2050年までに電気自動車などの普及で、日本の 電力需要は少なくとも現在の1.5倍になるといわれています。 その電力の3分の1を供給するだけでも24基の原子力発電 所が必要です。それには再稼働を促進するとともに、長期運 転や新増設の道を開くべきだと考えます。

◆中部電力浜岡原子力発電所の安全対策例

防波壁

② カーボンニュートラルに原子力発電は不可欠

安全性・経済性に優れた小型モジュール炉

日本では、世界の潮流が脱原発のような論調が目立ちます が、実際は「カーボンニュートラル実現に向けた原発推進」が 主流となりつつあります。それを象徴するのが世界各国で開 発が加速している「小型モジュール炉(SMR)」です。

SMRは従来の出力100万kW超の原子炉と異なり、1基当 たりの出力が30万kW程度の小さな原子炉です。小型炉は体 積の割に表面積が大きいため冷却しやすく、格納容器ごと プールに入れて動かすという無理のない構造です。そのため 仮に事故が起きても非常用電源や追加の冷却水が必要なく、 炉心を安全に冷やして停止できます。

さらに、従来の原子炉は専用に設計する"一点もの"です が、SMRは工場で生産して現地に据え付けるモジュール工法 のため、工期も短く大幅なコストダウンが図れます。また、複数 のSMRを接続させれば大型原発並みの出力を得られます。

多用途に原子力を活用する時代へ

SMRは発電の用 途以外に、水素の製 造、熱エネルギーの利 用、遠隔地でのエネ ルギー源、放射線医 療、さらには高レベル 放射性廃棄物の焼 却(核燃料サイクル に貢献)などに特化し た使い方も可能です。

描いた小型モジュール炉の三次元設計図。

このように大きな可能性を秘めたSMRの商業運転に向け て、米国・英国・中国・ロシアなどが国を挙げて開発を進め、中 国などはSMRを143地点に設置して暖房用石炭の消費を削 減すると明言しています。また、日本の企業も米国企業に出 資したり合弁会社でSMRの早期実用化を急いでいます。